Negative Energy Density States for the Dirac Field in Flat Spacetime
نویسنده
چکیده
Negative energy densities in the Dirac field produced by state vectors that are the superposition of two single particle electron states are examined. I show that for such states the energy density of the field is not bounded from below and that the quantum inequalities derived for scalar fields are satisfied. I also show that it is not possible to produce negative energy densities in a scalar field using state vectors that are arbitrary superpositions of single particle states. Introduction Recent work on wormholes [1, 2, 3] and the ‘warp drive’ [4] has generated interest in matter that violates the weak energy condition. Most discussions of such exotic matter occur within the context of quantum field theory and deal with bosonic fields [1, 2, 5, 6, 8, 9] (see [10, 11, 12] for a classical discussion and [7] for a discussion of
منابع مشابه
Spacetimes admitting quasi-conformal curvature tensor
The object of the present paper is to study spacetimes admitting quasi-conformal curvature tensor. At first we prove that a quasi-conformally flat spacetime is Einstein and hence it is of constant curvature and the energy momentum tensor of such a spacetime satisfying Einstein's field equation with cosmological constant is covariant constant. Next, we prove that if the perfect flui...
متن کاملAn absolute quantum energy inequality for the Dirac field in curved spacetime
Quantum Weak Energy Inequalities (QWEIs) are results which limit the extent to which the smeared renormalised energy density of a quantum field can be negative. On globally hyperbolic spacetimes the massive quantum Dirac field is known to obey a QWEI in terms of a reference state chosen arbitrarily from the class of Hadamard states; however, there exist spacetimes of interest on which state-dep...
متن کاملSADDLE POINT VARIATIONAL METHOD FOR DIRAC CONFINEMENT
A saddle point variational (SPV ) method was applied to the Dirac equation as an example of a fully relativistic equation with both negative and positive energy solutions. The effect of the negative energy states was mitigated by maximizing the energy with respect to a relevant parameter while at the same time minimizing it with respect to another parameter in the wave function. The Cornell pot...
متن کاملScalar Field Quantum Inequalities in Static Spacetimes
We discuss quantum inequalities for minimally coupled scalar fields in static spacetimes. These are inequalities which place limits on the magnitude and duration of negative energy densities. We derive a general expression for the quantum inequality for a static observer in terms of a Euclidean two-point function. In a short sampling time limit, the quantum inequality can be written as the flat...
متن کاملQuantum interest for scalar fields in Minkowski spacetime
The quantum interest conjecture of Ford and Roman states that any negative energy flux in a free quantum field must be preceded or followed by a positive flux of greater magnitude, and the surplus of positive energy grows the further the positive and negative fluxes are apart. In addition, the maximum possible separation between the positive and negative energy decreases the larger the amount o...
متن کامل